“Nós mostramos pela primeira vez que o brilho destes enigmáticos objetos vem de radiação dispersada, emitida por galáxias brilhantes escondidas no seu interior, ao contrário do se pensava o gás espalhado por toda a nuvem que está brilhando”. As bolhas Lyman-alfa são conhecidas como um dos maiores objetos existentes no Universo: nuvens gigantes de hidrogênio gasoso que podem atingir diâmetros da ordem de meio milhão de anos-luz (5 vezes o diâmetro da nossa galáxia, a Via Láctea) até 200 milhões de anos luz e que são tão energéticas quanto as galáxias mais brilhantes. As bolhas Lyman-alfa são tipicamente encontradas a grandes distâncias, por isso nós as vemos tal como se apresentavam quando o Universo era jovem, com apenas poucos bilhões de anos de idade. Assim, estes objetos são importantes para a compreensão da formação e evolução das galáxias no Universo primordial. Até então, a fonte de energia da sua extrema luminosidade assim como a natureza exata das bolhas era tida como incerta pelos astrônomos. A equipe estudou uma das primeiras bolhas já descobertas e também uma das mais brilhantes. Conhecida pelo nome de LAB-1, este objeto foi descoberto em 2000 e encontra-se tão distante que a sua radiação leva cerca de 11,5 bilhões de anos para chegar até nós. Com um diâmetro de cerca de 300.000 anos-luz, LAB-1 é também umas das maiores bolhas que temos conhecimento. LAB-1 contém várias galáxias primordiais no seu interior, incluindo uma galáxia ativa. Existem várias teorias que pretendem explicar as bolhas Lyman-alfa. Uma delas supõe que estes objetos brilham quando gás frio é atraído pela gravidade elevada da bolha e consequentemente aquece. Outra supõe que o brilho se deve a objetos brilhantes existentes no seu interior: galáxias com formação estelar elevada, ou que contêm buracos negros que se encontram a atrair matéria. Estas novas observações mostram que a fonte de energia da LAB-1 deve-se, de fato, a galáxias no seu interior ao invés de gás a ser atraído e aquecido. A equipe testou as duas teorias fazendo medições para saber se a radiação emitida pela bolha se encontrava polarizada. Ao estudar qual a polarização da radiação, os astrônomos podem inferir sobre os processos físicos que lhe dão origem, ou saber o que lhe aconteceu entre a sua emissão e a sua chegada à Terra. Se for refletida ou dispersada torna-se polarizada e este efeito pode ser detectado por um instrumento muito sensível. Medir a polarização da radiação emitida por uma bolha Lyman-alfa é, no entanto, algo bastante difícil, já que estes objetos se encontram muito distantes de nós. Claudia Scarlata (Universidade do Minnesota, EUA), co-autora do artigo, esclareceu:Estas observações nunca poderiam ter sido feitas sem a ajuda do VLT e do seu instrumento FORS. Precisávamos claramente de duas coisas: um telescópio com um espelho de, pelo menos, oito metros de diâmetro de modo a poder coletar radiação suficiente, e de uma câmera capaz de medir a polarização da radiação. Não existem muitos observatórios no mundo capazes de oferecer uma tal combinação. Ao observar o seu alvo ao longo de cerca de 15 horas com o VLT (Very Large Telescope), a equipe descobriu que a radiação emitida pela bolha Lyman-alfa LAB-1 estava polarizada em um anel em torno da região central e que não há polarização no centro. Este efeito peculiar é praticamente impossível de atingir se a radiação for emitida apenas pelo gás que está a ser atraído pela bolha devido à gravidade, mas justamente isto é o que se espera se a radiação tiver origem em galáxias embebidas na região central, antes de ser dispersada pelo gás. Os astrônomos planejam estudar mais objetos deste tipo para comprovar se os resultados obtidos para a bolha LAB-1 são válidos para outras bolhas.
Créditos: Eternos Aprendizes
Nenhum comentário:
Postar um comentário